форум
22.08.2019
Просмотров: 125
Нью бест

Каковы главные характеристики треугольников?

alex2

Треугольник — это многоугольник с 3-мя сторонами (либо 3-мя углами). Стороны треугольника нередко обозначаются малеханькими буквами, которые соответствуют большим буквам, обозначающим обратные вершины.

Остроугольным треугольником именуется треугольник, у которого все три угла острые.

Тупоугольным треугольником именуется треугольник, у которого один из углов тупой.

Прямоугольным треугольником именуется треугольник, у которого один из углов прямой, другими словами равен 90°; стороны a, b, образующие прямой угол, именуются катетами; сторона c, обратная прямому углу, именуется гипотенузой.

Равнобедренным треугольником именуется треугольник, у которого две его стороны равны (a = c); эти равные стороны именуются боковыми, 3-я сторона именуется основанием треугольника.

Равносторонним треугольником именуется треугольник, у которого все его стороны равны (a = b = c). В том случае в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник.

Главные характеристики треугольников

В любом треугольнике:

  • Против большей стороны лежит больший угол, и напротив.
  • Против равных сторон лежат равные углы, и напротив. А именно, все углы в равностороннем треугольнике равны.
  • Сумма углов треугольника равна 180°.
  • Продолжая одну из сторон треугольника, получаем наружный угол. Наружный угол треугольника равен сумме внутренних углов, не смежных с ним.
  • Неважно какая сторона треугольника меньше суммы 2-ух других сторон и больше их разности (a b — c; b a — c; c a — b).
  • Признаки равенства треугольников

    Треугольники равны, в том случае у их соответственно равны:

  • две стороны и угол меж ними;
  • два угла и прилегающая к ним сторона;
  • три стороны.
  • Признаки равенства прямоугольных треугольников


    Два прямоугольных треугольника равны, в том случае производится одно из последующих критерий:

  • равны их катеты;
  • катет и гипотенуза 1-го треугольника равны катету и гипотенузе другого;
  • гипотенуза и острый угол 1-го треугольника равны гипотенузе и острому углу другого;
  • катет и прилежащий острый угол 1-го треугольника равны катету и прилежащему острому углу другого;
  • катет и противолежащий острый угол 1-го треугольника равны катету и противолежащему острому углу другого.
  • Высота треугольника — это перпендикуляр, опущенный из хоть какой вершины на обратную сторону (либо её продолжение). Эта сторона именуется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, именуемой ортоцентром треугольника.

    Ортоцентр остроугольного треугольника размещен снутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с верхушкой прямого угла.

    Медиана — это отрезок, соединяющий всякую верхушку треугольника с серединой обратной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся его центром масс. Эта точка разделяет каждую медиану в отношении 2:1, считая от вершины.

    Биссектриса — это отрезок биссектрисы угла от вершины до точки скрещения с обратной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся центром вписанного круга. Биссектриса разделяет обратную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

    В остроугольном треугольнике эта точка лежит снутри треугольника, в тупоугольном — снаружи, в прямоугольном — посреди гипотенузы. Ортоцентр, центр масс, центр описанного и центр вписанного круга совпадают исключительно в равностороннем треугольнике.

    Аксиома Пифагора


    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Подтверждение аксиомы Пифагора

    Построим квадрат AKMB, используя гипотенузу AB как сторону. Потом продолжим стороны прямоугольного треугольника ABC так, чтоб получить квадрат CDEF, сторона которого равна a + b. Сейчас ясно, что площадь квадрата CDEF равна ( a + b ) 2. С иной стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, другими словами,

    c 2 + 4 (ab / 2) = c 2 + 2 ab,

    отсюда,

    c 2 + 2 ab = (a + b) 2,

    и совсем имеем:

    c 2 = a 2 + b 2 .

    Соотношение сторон в случайном треугольнике


    В общем случае (для случайного треугольника) имеем:

    c 2 = a 2 + b 2 — 2 ab * cos C,

    где С — угол меж сторонами а и b.

    Полезные ссылки:

  • school-club.ru — какие бывают треугольники?
  • math.ru — виды треугольников;
  • raduga.rkc-74.ru — все о треугольниках для самых малеханьких.
  • Дополнительно на New-Best.com:

  • Как классифицируются треугольники?
  • Как отыскать площадь треугольника?
  • Как отыскать площадь прямоугольного треугольника?
  • Как отыскать радиус вписанной в треугольник окружности?
  • Как отыскать радиус описанной вокруг треугольника окружности?
  • Как доказать аксиому косинусов?
  • Array

    Добавить комментарий

    орфографическая ошибка в тексте:
    чтобы сообщить об ошибке автору, нажмите кнопку "отправить сообщение об ошибке". вы также можете отправить свой комментарий.

    Задать вопрос прямо сейчас